DOCUMENTALES

LA ROBOTICA
la evolución de la robótica, como sobre la de cualquier tecnología en rápido desarrollo, es siempre difícil y arriesgado. La historia reciente de la robótica, tal como se comenta en la introducción, está plagada de previsiones no cumplidas y esperanzas no confirmadas. No obstante, es siempre conveniente mirar hacia el futuro y, con las salvedades del caso, se indican en este apartado algunas de las tendencias previsibles a corto y medio plazo.

Para este cometido, resulta especialmente útil analizar las inquietudes y desarrollos puestos de manifiesto en los congresos internacionales sobre la materia, como, por ejemplo, el IEEE International Conference on Robotics and Automation (ICRA) [2] [3], de carácter científico, y el International Symposium on Robotics (ISR) [4] [5], con orientación aplicada.

Ambos tienen periodicidad anual y reúnen a un buen número de especialistas en el campo.

Arquitectura de robots

La estructura mecánica condiciona tanto el espacio de trabajo como las prestaciones que pueden esperarse de un robot manipulador. Por este motivo ha sido objeto de numerosos estudios en el intento de lograr estructuras que puedan sustituir con ventaja a las tradicionales, al menos en determinadas aplicaciones. A pesar de las numerosas propuestas realizadas, ninguna de ellas se ha abierto camino de una manera clara en el ámbito industrial. Tal como ha quedado reflejado en el apartado 2.2, los denominados robots angulares acaparan casi la mitad del mercado mundial y los más novedosos robots paralelos solamente representan el 0,5% de los robots instalados en 1997.

No obstante, la investigación en este campo continúa adelante y son de esperar avances en el mismo. En lo que hace referencia a las articulaciones, dos interesantes paradigmas marcan los objetivos a alcanzar. Por un lado, la articulación tipo nudillo que se caracteriza por su ligereza, tamaño reducido, precisión y rapidez, y, por otro, la de tipo rodilla, paradigma de relación entre diseño mecánico, control complejo y suspensión activa.

Los actuadores de accionamiento directo, evitando transmisiones que pueden dar lugar a oscilaciones o comportamientos inadecuados, parecen tener un futuro prometedor. De la misma forma, los motores de estado sólido, especialmente en microrobótica pueden tener un importante desarrollo. Dentro de este campo puede también mencionarse el diseño conjunto actuador-control, como un medio de conseguir mejores prestaciones del robot.

En cuanto a los sistemas de locomoción, aspecto esencial para los robots móviles, las ruedas siguen siendo la opción de mayor futuro, si bien combinadas con algún tipo de soporte articulado, activo o pasivo, para su utilización en terrenos irregulares.

Control de movimientos

En los últimos años, los robots han constituido una planta excelente para la aplicación y ensayo de numerosas técnicas de control. En este sentido, cabe mencionar el control adaptativo, el control por modos deslizantes, las técnicas de pasividad, el control difuso y el control neuronal, entre otros. Muchos de los sistemas desarrollados han sido probados únicamente en simulación y no han sido sometidos aún a una verificación experimental que permita su validación real.

No obstante, diversos fabricantes de robots han incorporado mejoras derivadas de estos desarrollos y puede apreciarse una paulatina mejora en las prestaciones de los sistemas de control, ligada también, evidentemente, a la disponibilidad de micro procesadores más rápidos y potentes. En esta línea, algunos fabricantes han comenzado a incorporar en sus sistemas módulos de compensación dinámica que permiten al robot cargado seguir con precisión trayectorias a velocidad elevada.

La identificación en línea del modelo del robot puede permitir mejorar su comportamiento dinámico y supervisar su funcionamiento en vistas a detectar disfuncionalidades o fallos del sistema.


Programación, planificación y aprendizaje

La interfase hombre-máquina y, en concreto, la programación de los robots para la ejecución de las tareas es uno de los temas básicos para la efectiva expansión de los robots en los ambientes industriales. Uno de los temas recientes de discusión es la necesidad o conveniencia de alcanzar un estándar sobre un lenguaje de programación para robots que pudiese ser convertido por software en el lenguaje específico de cada robot. Sobre este punto, diversos fabricantes han expresado opiniones contrapuestas, pero parece haber un consenso generalizado sobre la necesidad de hacer más fácil, seguro y eficiente para el usuario el desarrollo de aplicaciones robotizadas.

En esta dirección cumple un papel decisivo la programación fuera de línea, que no ocupa tiempo de trabajo del robot, asistida de la simulación gráfica y de elementos como el posicionamiento relacional que facilita la obtención de posiciones y orientaciones que ha de alcanzar el robot.

La planificación de tareas fue un tema de boga hace unos años que quedó después en un segundo plano debido a la dificultad de realizar planificadores realistas y utilizables en un entorno industrial. En estos momentos, los objetivos son claramente más modestos y la planificación se orienta más como una ayuda a la programación en tareas complejas que como un sistema autónomo. Ejemplos de este enfoque son la planificación de movimientos sin colisión, de la acomodación activa en tareas de montaje con robots y de las curvas de pulido en el acabado de piezas. En todo caso, los planificadores, para ser realistas, deben tener en cuenta la incertidumbre siempre presente en la ejecución de una tarea y la utilización de los sensores disponibles para llevar a cabo la misma.

La programación reactiva y el aprendizaje son otras técnicas prometedoras aunque todavía incipientes en el entorno industrial. La introducción del aprendizaje en el campo de la robótica viene motivada básicamente por la necesidad del robot para adquirir
automáticamente los conocimientos necesarios para la realización de determinadas tareas. Esta necesidad es debida, en algunos casos, a la existencia de tareas difíciles de programar pero cuya forma de realización puede ser mostrada fácilmente al robot. Otras veces, sucede que la información necesaria para programar el robot no es accesible y el robot ha de adquirir ese conocimiento mediante la exploración. Un caso similar se produce en entornos dinámicos en los que el robot ha de ser capaz de tener constantemente actualizado el conocimiento de los mismos.

Integración de robots

Tal como se ha mencionado en la introducción, el robot industrial es cada vez más un elemento dentro de un sistema automático de producción. En este sentido, adquiere una gran importancia la integración del robot con otros robots y con otras máquinas.

En el campo de la cooperación entre robots pueden mencionarse como temas abiertos el reparto de tareas entre los distintos robots, el control combinado fuerza-posición en la manipulación conjunta por parte de varios robots y la evitación de colisiones entre ellos.

La integración de robots en celdas robotizadas pone de manifiesto una serie de problemas hasta ahora resueltos solamente de forma parcial, como son el diseño de la arquitectura de la célula, la comunicación entre máquinas, la simulación del funcionamiento y la programación de la celda.

Los robots industriales ocupan un lugar destacado dentro de la automatización de la producción y su papel se ha ido consolidando en los últimos años. Después de un descenso en las ventas, tanto en el conjunto del mundo como en España, que tuvo su mínimo en 1993, el mercado de robots ha seguido una evolución creciente. No obstante, la industria automotriz continúa siendo el sector mayoritario en cuanto a utilización de robots, especialmente en España. Si bien la soldadura en sus diversos tipos sigue siendo un campo muy importante de aplicación, el número de robots dedicados al montaje en el conjunto del mundo es mayoritario.

Aunque resulta difícil hacer previsiones de futuro en el desarrollo de la robótica, algunos temas destacan de manera clara: las exigencias crecientes de fiabilidad y eficiencia, la interfase hombre-máquina a través de sistemas gráficos y programación fuera de línea, la importancia creciente de los sensores y de la integración sensorial, la interconexión entre máquinas, la coordinación entre robots y otras máquinas, y la teleoperación. Igualmente, es importante mencionar los nuevos campos en expansión de aplicación de la robótica como la exploración, la agricultura, la industria alimentaria y la medicina, que complementarán en el futuro la ya tradicional robótica industrial.

0 comentarios:

Publicar un comentario